Calculating Gradient, Divergence, and Rotation under Orthogonal Curvilinear Coordinates

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Ramond Fermions to Lamé Equations for Orthogonal Curvilinear Coordinates

We show how Ramond free neutral Fermi fields lead to a τ -function theory of BKP type which describes iso-orthogonal deformations of systems of ortogonal curvilinear coordinates. We also provide a vertex operator representation for the classical Ribaucour transformation.

متن کامل

Multiinstantons in Curvilinear Coordinates

The 'tHooft's 5N-parametric multiinstanton solution is generalized to curvilinear coordinates. Expressions can be simplified by the gauge transformation that makes η-symbols constant in the vierbein formalism. This generates the compensating addition to the gauge potential of pseudoparticles. Typical examples (4-spherical, 2 + 2-and 3 + 1-cylindrical coordinates) are studied and explicit formul...

متن کامل

Instantons in curvilinear coordinates

The multi-instanton solutions by ’tHooft and Jackiw, Nohl & Rebbi are generalized to curvilinear coordinates. Expressions can be notably simplified by the appropriate gauge transformation. This generates the compensating addition to the gauge potential of pseudoparticles. Singularities of the compensating connection are irrelevant for physics but affect gauge dependent quantities. The third con...

متن کامل

Bayesian Wombling: Curvilinear Gradient Assessment Under Spatial Process Models.

Large-scale inference for random spatial surfaces over a region using spatial process models has been well studied. Under such models, local analysis of the surface (e.g., gradients at given points) has received recent attention. A more ambitious objective is to move from points to curves, to attempt to assign a meaningful gradient to a curve. For a point, if the gradient in a particular direct...

متن کامل

An Adaptive, Higher-order Godunov Method for Gas Dynamics in Three-dimensional Orthogonal Curvilinear Coordinates

We describe an adaptive higher-order Godunov method for the compressible Euler equations with an arbitrary convex equation of state in a three-dimensional system of orthogonal curvilin-ear coordinates. The single grid algorithm is a fractional-step method which uses a second-order Godunov method for gas dynamics in each fractional step. The single grid algorithm is coupled to a conservative loc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mechanics Research

سال: 2016

ISSN: 2325-498X,2325-5005

DOI: 10.12677/ijm.2016.52005